
@rhtyd | rohityadav.cloud

CloudStack Virtual Router:
Past, Present, Future

Rohit Yadav Software Architect, ShapeBlue

rohit.yadav@shapeblue.com

@rhtyd | rohityadav.cloud

• Software Architect @ ShapeBlue.
• From Gurugram, India.
• Background:

○ Committer and PMC, 6 years and counting!
○ RM for 4.11.0.0, RM and maintainer for minor releases

4.5.x, 4.6.x, 4.7.x, 4.8.x, 4.9.x.
○ Specialize in design and architecture, development work,

framework, tooling, APIs, KVM, VR/networking,
debugging. Author of cloudmonkey � and several
features in CloudStack.

• Vegetarian, love animals � and programming.

$ whoami

@rhtyd | rohityadav.cloud

● Introduction: SystemVMs and VRs
● Comparison: Past and Present VRs
● Overview of Present VR

○ Building and Patching
○ Networking, Isolation, Network types
○ Network Implementation
○ VR programming

● Future Work
● Q&A

Topics

@rhtyd | rohityadav.cloud

What is Virtual Router? Why we need it?

● What is CloudStack systemvmtemplate?
A single VM disk image that can be used to create
service VMs: console proxy, ssvm, router, vpc router,
dhcp (basic zone) router, elastic LB VM, internal LB VM.

● Virtual Router is a specially patched VM using the
systemvmtemplate, it provides SDN solution to
CloudStack.

● To support legacy and cloud-era workloads and their
network requirements.

@rhtyd | rohityadav.cloud

What’s past, present, future?

● Ancient: ACS 4.0-4.2, 4.3-4.5
● Past: ACS 4.6-4.10
● Present: ACS 4.11
● Future: ACS 4.12/4.13+

@rhtyd | rohityadav.cloud

Past VR (ACS 4.6-4.9)
● Debian Wheezy 7.x 32/64-bit
● Template disk size: 3.2GB
● Linux kernel 3.2.x + init.d
● Python based code
● Java 1.7.x
● VPN: openswan 1:2.6.37x
● VRRP: keepalived 1.2.2x
● Misc: EOL

Comparison: Virtual Router Factsheet

Present VR (ACS 4.11)
● Debian Stretch 9.x 64-bit
● Template disk size: 1.8-2.1GB
● Linux kernel 4.9.x + systemd
● Python based *refactored code
● Java 1.8.x
● VPN: strongswan 5.5.1x
● VRRP: keepalived 1.3.2x
● Misc: more secure, stable and

tested
Migrate to Debian9 systemvmtemplate: https://github.com/apache/cloudstack/pull/2211

https://github.com/apache/cloudstack/pull/2211

@rhtyd | rohityadav.cloud

Past VR (ACS 4.6-4.9)
● VirtualBox + Linux/Mac + Debian

minimal-iso installer
● Export tools: qemu-img,

vhd-util*, ovftool
● Archive tools: bzip2, zip,
● Targets: KVM, VMware,

XenServer, HyperV, OVM3
● Setup: Difficult

Comparison: Virtual Router Building

Present VR (ACS 4.11)
● Packer + Linux/Qemu + Debian

minimal-iso installer
● Export tools: qemu-img,

vhd-util*, ovftool
● Archive tools: bzip2, zip,
● Targets: KVM, VMware,

XenServer, HyperV, OVM3
● Setup: Easy, CI/CD Jenkins

@rhtyd | rohityadav.cloud

Past VR (ACS 4.6-4.9)
● Patch using systemvm.iso
● Single large cloud-early-config

patching script
● Reboot: 1-3 times, post-patching
● Patching: Slow
● Access: SSH + console proxy +

limited serial tty access on
xenserver

Comparison: Virtual Router Patching

Present VR (ACS 4.11)
● Patch using systemvm.iso
● Several small patching scripts,

very small cloud-early-config
● Reboot: zero** post-patching
● Patching: fast + faster bootup
● Access: SSH + console proxy +

serial tty access on KVM and
XenServer

** conditional reboot in case of vmware

@rhtyd | rohityadav.cloud

Present VR: Towards near zero-downtime upgrade

Behaviour for Non-redundant VR:
Deploy a new VR, program it, destroy old VR,
re-program it (for arping)
Behaviour for Redundant VR: (~0s downtime)
Destroy old backup VR, provision new backup VR,
destroy old master VR, provision new backup VR.
VRRP takes care of arp advertisements.

Pull request:
https://github.com/apache/cloudstack/pull/2508
Reference:
https://www.shapeblue.com/working-towards-cloudstac
k-zero-downtime-upgrades/

ENVIRO
NMENT

ACS
4.9.3
AVG

ACS 4.11.1 AVG
(LOWEST)

REDUCTION
AVG (HIGHEST)

VMware
5.5

119s 21s (12s) 82% (90%)

KVM /
CentOS7

44s 26s (9s) 40% (80%)

XenServe
r 7.0

181s 33s (15s) 82% (92%)

Network downtime
for isolated
non-redundant VR

https://github.com/apache/cloudstack/pull/2508
https://www.shapeblue.com/working-towards-cloudstack-zero-downtime-upgrades/
https://www.shapeblue.com/working-towards-cloudstack-zero-downtime-upgrades/

@rhtyd | rohityadav.cloud

Groking the
CloudStack VR
Back to the future: Understand the present!

@rhtyd | rohityadav.cloud

Survey: Current VR Implementation

@rhtyd | rohityadav.cloud

agent.zip
cloud-scripts.tgz
authorized_keys

How SystemVMs are born?

SystemVM
Template

system
vm.iso

Virtual Router
CPVM
SSVM

...

cloud-early-config + reboots**cmdline

$TYPE

VM

@rhtyd | rohityadav.cloud

❏ SystemVM Template
Build, Patch, Upgrade

❏ CloudStack + Networking
❏ VR programming

● VM DHCP + DNS (dnsmasq)
● VM Password (cloud-password-service)
● VM Metadata (apache2)
● Guest Network (iproute2)
● Network ACLs (iptables: filter)
● Firewall Rules (iptables: filter)
● Forwarding Rules (iptables: nat, filter)
● Static NAT Rules (iptables: nat, iproute2)
● Load Balancer (haproxy)
● VPN: S2S, Remote Access, Users

(ipsec:strongswan, xl2tpd, ppp)
● Static Routes (iproute2)
● Redundancy (keepalived, conntrackd)
● Service Monitoring (monitor_service.sh)
● Network Stats (netusage.sh)

VR Lifecycle

@rhtyd | rohityadav.cloud

Demo and Example: MonkeyBox + KVM

Demo and examples of this talk use CentOS 7 + KVM
MonkeyBox:
https://github.com/rhtyd/monkeybox

The mbx host has a single ethernet bridge that is used for
private, public, management and storage networks.

14

https://github.com/rhtyd/monkeybox
https://github.com/rhtyd/monkeybox

@rhtyd | rohityadav.cloud

Building SystemVM Template
$ git clone <repo>

$ cd tools/appliance

$ bash build.sh systemvmtemplate

Built artifacts are at: tools/appliance/dist

Reference for packages that are installed:
https://github.com/apache/cloudstack/blob/4.11/tools/appliance/systemvmt
emplate/scripts/install_systemvm_packages.sh

https://github.com/apache/cloudstack/blob/4.11/tools/appliance/systemvmtemplate/scripts/install_systemvm_packages.sh
https://github.com/apache/cloudstack/blob/4.11/tools/appliance/systemvmtemplate/scripts/install_systemvm_packages.sh

@rhtyd | rohityadav.cloud

ACS 4.11 SystemVM Patching
● Patches without* reboot, systemd enabled and super

fast patching!
● Stage 1: cloud-early-config script patches using

attached systemvm.iso. CloudStack passes cmdline
options via:
○ KVM: serial port (patchviasocket.py)
○ XenServer: kernel cmd params i.e /proc/cmdline

or uses xenstore utils
○ VMware: openvm-tools to read

● Stage 2: systemvm type based script is executed.
● Stage 3: cloud-postinit concludes patching, ejects

iso.

https://github.com/apache/cloudstack/tree/4.11/systemvm/debian/etc/systemd/system

@rhtyd | rohityadav.cloud 17

Timeline

Not considered
patched until
ssh runs!
systemd-analyze

Startup finished in 796ms (kernel) +
10.205s (userspace) = 11.001s

systemd-analyze plot > flame.svg

@rhtyd | rohityadav.cloud

What is in systemvm.iso?
● authorized_keys: ssh public key, this gets patched by

management server and kvm agent in the iso file.
● agent.zip: CPVM, SSVM jars, assets, configs. Installed at

● cloud-scripts.tgz: /etc configs, /opt/cloud/bin/ VR codebase and
scripts, /root and /var config/scripts.

● Attached to a systemvm while booting:
○ KVM: kvm agent attaches it on host using:

/usr/share/cloudstack-common/vms/systemvm.iso
○ VMware: attached using systemvm.iso at secondary storage.
○ XenServer: attached from /opt/xensource/packages/iso

@rhtyd | rohityadav.cloud

sysctl: Kernel Parameters
● Allow packet forwarding:

net.ipv4.ip_forward = 1

● Disable reverse path verification: (source validation)

net.ipv4.conf.default.rp_filter = 0 (Only enabled for guest network by CsAddress.py)

● Local ARP interactions: (for local interfaces, guests; don’t tell world!)

net.ipv4.conf.default.arp_announce = 2

net.ipv4.conf.default.arp_ignore = 2

● Allow binding on IPs that don’t exist on interface:

net.ipv4.ip_nonlocal_bind = 1

● Kernel crash handling: (panic immediately, reboot VR)

kernel.panic = 10

kernel.panic_on_oops = 1

vm.panic_on_oom = 1

References:https://github.com/apache/cloudsta
ck/blob/4.11/systemvm/debian/etc/sysctl.conf

https://www.kernel.org/doc/Documentation/sysc
tl/kernel.txt

https://github.com/apache/cloudstack/blob/4.11/systemvm/debian/etc/sysctl.conf
https://github.com/apache/cloudstack/blob/4.11/systemvm/debian/etc/sysctl.conf
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

@rhtyd | rohityadav.cloud

Post-patching
● Access via ssh via port 3922:

https://github.com/apache/cloudstack/blob/4.11/systemvm/debian/etc/ssh/s
shd_config#L13

● Access IP:
○ KVM: link-local (control)
○ XenServer: link-local (control)
○ VMware: private IP

● CheckSshCommand is executed post system VM orchestration to check
SSH accessibility.

https://github.com/apache/cloudstack/blob/4.11/systemvm/debian/etc/ssh/sshd_config#L13
https://github.com/apache/cloudstack/blob/4.11/systemvm/debian/etc/ssh/sshd_config#L13

@rhtyd | rohityadav.cloud

Troubleshooting and Debugging

The old wiki:
https://cwiki.apache.org/confluence/display/CLOUDSTACK/SSVM%2C+templat
es%2C+Secondary+storage+troubleshooting
● SSH via access IP and port 3922 from host (KVM, XenServer) or

management server (VMware).
● Or, access via virsh console <domain> or xe console <vm id>
● Run systemd-analyze to check if patching/boot completed.

systemd-analyze

systemd-analyze critical-chain

systemctl status --all

https://cwiki.apache.org/confluence/display/CLOUDSTACK/SSVM%2C+templates%2C+Secondary+storage+troubleshooting
https://cwiki.apache.org/confluence/display/CLOUDSTACK/SSVM%2C+templates%2C+Secondary+storage+troubleshooting

@rhtyd | rohityadav.cloud

CloudStack Network Models

● Flat Network (switched, shared, L2...)
● NAT-ed Network (isolated, multi-tier/vpc)
● Routed Network: CloudStack does not

support ‘em yet (PoC OSPF+quagga exists)

@rhtyd | rohityadav.cloud

Get your Layers straight!

● L2: ARP (MAC address), PPP, FC, FDDI...
● L3: IP (v4+v6), ICMP (v4+v6), IPSec, IGMP,

OSPF, RIP…
● L4: TCP, UDP…
● L5: Socket (sessions)
● L6: Presentation (ascii, mime, encoding etc)
● L7: Applications! (http, ntp, dns, dhcp)

@rhtyd | rohityadav.cloud

OSI Model

@rhtyd | rohityadav.cloud

Physical Network

● Switch (L2)
● Trunk + VLANs
● (Core) Routers (L3)
● …

@rhtyd | rohityadav.cloud

Network Isolation Modes

● VLAN
● VXLAN (KVM + iproute2)
● GRE (OpenVSwitch)
● STT (Nicira)
● VSP (Nuage)
● L3VPN, ODL ...

** Use-case: Isolate multi-tenant guest network

@rhtyd | rohityadav.cloud

Isolation: VLAN (IEEE 802.1Q)

● VLAN ID (VID) - 12 bit. 2^12 ids (4096) ids. (VID 0 & 4095 reserved)
● Load kernel module:

modprobe 8021q
● VLAN config on an interface:

vconfig add <intf> <vid>
Or, use iproute2:
ip link add link <intf> name <intf>.<vid> type vlan id <vid>

● Add address:
ip addr add <ip/mask> dev <intf>.<vid>

● Enable interface/link:
ip link set up <intf>.<vid>

16 bits 3
bit
s

1 bit 12
bits

TPID TCI

PC
P

DEI VID

@rhtyd | rohityadav.cloud

Isolation: VXLAN

● Encapsulates L2 ethernet frames using L4 UDP datagrams (wrapper)
which includes the VXLAN header + original ethernet frame.

● Cloud-era isolation: 2^24, or 16M virtual network/isolation.
● KVM only for CloudStack, see

http://docs.cloudstack.apache.org/en/latest/networking/vxlan.html

http://docs.cloudstack.apache.org/en/latest/networking/vxlan.html

@rhtyd | rohityadav.cloud

VLAN: What is it again?

● 3 Physical switches, 2 Routers.
● A router routes packets between networks, switches facilitate communication within

network.
● A VLAN allows you to take one physical switch, and break it up into smaller

mini-switches.
Reference: http://www.practicalnetworking.net/stand-alone/vlans/#tagged-untagged

http://www.practicalnetworking.net/stand-alone/vlans/#tagged-untagged

@rhtyd | rohityadav.cloud

Typical Bridge Networking (KVM)

Without Isolation (VLAN) With Isolation (VLAN)

● AP ⇉ TP => Tag
● Any ⇉ AP => Untag
● Trunk with native

VLAN considered to
tag if VID not already
present

@rhtyd | rohityadav.cloud

Reference: Experiment in KVM
● List VMs: virsh list
● List interfaces: ip a[ddr]
● List bridges: brctl show
● Dump xml: virsh dumpxml <domain>
● Dump iptables: iptables-save (or iptables

-S)
● Dump ebtables: ebtables-save (or ebtables

-S)
● Debug: tcpdump, traceroute, ping...

@rhtyd | rohityadav.cloud

CloudStack Network Types

● L2 Network
● Isolated:

○ Isolated Network (Single tier/cidr)
○ VPC Network (Multi-tier/cidrs)

● Shared:
○ Basic Zone + Adv Zone
○ Optional with Security Groups (L2/bridge on host,

only supported on XenServer and KVM)

@rhtyd | rohityadav.cloud

VR Programming
● Orchestration: VirtualRoutingResource, VirtualRouterDeployer
● Executable scripts at /opt/cloud/bin/ in VR
● Executable scripts run via router_proxy.sh or directly in the /opt/cloud/bin path
● Commands sent as json saved at /var/cache/cloud/ and updated in VR by

update_config.py. On updation, they are moved and gzip-ed at
/var/cache/cloud/processed.

● VR Config (VR-<uuid>.cfg) file has aggregated file+contents and commands in
a custom xml format, processed by vr_cfg.sh.

● VR config jsons are stored at /etc/cloudstack/ which is used to compare
existing vs new config and only diffs (changes) are applied that are calculated
by per-command type databag handlers (in cs_*.py, merge.py).

● Details!

33

@rhtyd | rohityadav.cloud

OOM! Kernel Panic! Stop!

@rhtyd | rohityadav.cloud

SSVM, CPVM Network Setup
● Agent connects to mgmt server

over private network, eth1.
● eth0 is used as SSH

access/control IP to program
systemvm for XenServer and
KVM.

● eth1, private nic/IP is used to
access and program systemvm in
case of VMware from
management server host.

@rhtyd | rohityadav.cloud

L2 Network with untagged VLAN
● Gets DHCP/IP from same

network as configured host’s
public L2/L3 bridge.

● No VR needed.
● In the example, guest VM’s nic

connects to cloudbr0.
● Use case: Flat/shared network.

Highly scalable, IP/address
could be configured manually or
config drive based approach.

@rhtyd | rohityadav.cloud

L2 Network with VLAN
● VLAN based guest network

isolation.
● Connects to a L2 bridge for a

specific VLAN.
● No VR needed.
● In the example:

○ Guest VM’s nic connects to
breth0-5.

○ Will not get DHCP response
due to VLAN isolation from
monkeynet.

● Use case: Flat network, no VR but
with isolation.

@rhtyd | rohityadav.cloud

Isolated Network (with VLAN)
● VLAN based guest network

isolation.
● Virtual Router:

○ eth0 connects to guest
network L2-vlan bridge.

○ eth1 connects to link-local.
○ eth2 connects to public

network bridge.
● Use-case: Legacy approach,

controlled infra, security
boundaries...

@rhtyd | rohityadav.cloud

VPC (with VLAN)
● VLAN based isolation for guest

network tiers.
● Lazy programming.
● VPC Virtual Router:

○ eth0 connects to link-local
bridge.

○ eth1 connects to public
network bridge.

○ eth2 .. ethn connects to L2
guest network tier VLAN
bridge.

● Use-case: same as AWS VPC,
n-tier apps, security boundaries...

@rhtyd | rohityadav.cloud

Shared Network: No Isolation
● No isolation.
● VR provides dns and dhcp

services using dnsmasq.
● Shared Network VR:

○ eth0 connects to public
network L2 bridge.

○ eth1 connects to link-local.
● Use-case: simplest approach,

use dhcp/dns from a physical
private/public network.

@rhtyd | rohityadav.cloud

Shared Network: VLAN
● VLAN guest traffic isolation.
● VR provides dns and dhcp

services using dnsmasq.
● Shared Network VR:

○ eth0 connects to public
network VLAN based L2
bridge.

○ eth1 connects to
link-local.

● Use-case: Isolation between
tenants.

@rhtyd | rohityadav.cloud

Shared Network: Security Groups
● VLAN guest network isolation

available.
● VR provides dhcp+dns service via

dnsmasq.
● SG VR:

○ eth0 connects to public
network (VLAN) based L2/L3
bridge.

○ eth1 connects to link-local.
● Use-case: Cloud-era network

model, massively scalable, cloud
hosting.

@rhtyd | rohityadav.cloud

Learn from Others

● OpenStack https://twitter.com/rhtyd/status/980923569587834880

● Kubernetes and CNI such as Calico etc.
● Opensource VRs such as Vyos

https://twitter.com/rhtyd/status/980923569587834880

@rhtyd | rohityadav.cloud

What have I learnt?
● Build and patching process of a

systemvm
● SDN/NFV: Network models, types,

topologies and their implementation
in CloudStack

● VR is unaware of network isolation
● Non-core services and VR codebase

could be abstracted/containerized
● Ideas for future!

@rhtyd | rohityadav.cloud

Future Work
● Improve SystemVM template upgrade process.
● Redundant capable VRs, state-transfer and handover.
● Improve VR programming (speedup), remove

performance bottlenecks.
● Move away from Python 2.x. Migrate to nft + iproute2.
● Optimize SystemVM template size and bootup.
● Testing improvements.
● R&D: Containers? Get rid of VR? Explore other

technologies?

@rhtyd | rohityadav.cloud

Q&A - Thanks!

We’re Hiring!
https://www.shapeblue.com/careers/

https://www.shapeblue.com/careers/

